"Life at the Edge of Chaos"
The Santa Fe Institute was housed in a series of buildings on Canyon Road which had formerly been a convent, and the Institute's seminars were held in a room which had served as a chapel. Now, standing at the podium, with a shaft of sunlight shining down on him, Ian Malcolm paused dramatically before continuing his lecture.
Malcolm was forty years old, and a familiar figure at the Institute. He had been one of the early pioneers in chaos theory, but his promising career had been disrupted by a severe injury during a trip to Costa Rica; Malcolm had, in fact, been reported dead in several newscasts. "I was sorry to cut short the celebrations in mathematics departments around the country," he later said, "but it turned out I was only slightly dead. The surgeons have done wonders, as they will be the first to tell you. So now I am back - in my next iteration, you might say."
Dressed entirely in black, leaning on a cane, Malcolm gave the impression of severity. He was known within the Institute for his unconventional analysis, and his tendency to pessimism. His talk that August, entitled "Life at the Edge of Chaos," was typical of his thinking. In it, Malcolm presented his analysis of chaos theory as it applied to evolution.
He could not have wished for a more knowledgeable audience. The Santa Fe Institute had been formed in the mid-1980s by a group of scientists interested in the implications of chaos theory. The scientists came from many fields-physics, economics, biology, computer science. What they had in common was a belief that the complexity of the world concealed an underlying order which had previously eluded science, and which would be revealed by chaos theory, now known as complexity theory. In the words of one, complexity theory was "the science of the twenty-first century."
The Institute had explored the behavior of a great variety of complex systems - corporations in the marketplace, neurons in the human brain, enzyme cascades within a single cell, the group behavior of migratory birds - systems so complex that it had not been possible to study them before the advent of the computer. The research was new, and the findings were surprising.
It did not take long before the scientists began to notice that complex systems showed certain common behaviors. They started to think of these behaviors as characteristic of all complex systems. They realized that these behaviors could not be explained by analyzing the components of the systems. The time-honored scientific approach of reductionism - taking the watch apart to see how it worked - didn't get you anywhere with complex systems, because the interesting behavior seemed to arise from the spontaneous interaction of the components. The behavior wasn't planned or directed; it just happened. Such behavior was therefore called "self-organizing."
"Of the self-organizing behaviors," Ian Malcolm said, "two are of particular interest to the study of evolution. One is adaptation. We see it everywhere. Corporations adapt to the marketplace, brain cells adapt to signal traffic, the immune system adapts to infection, animals adapt to their food supply. We have come to think that the ability to adapt is characteristic of complex systems-and may be one reason why evolution seems to lead toward more complex organisms."
He shifted at the podium, transferring his weight onto his cane. "But even more important," he said, "is the way complex systems seem to strike a balance between the need for order and the imperative to change. Complex systems tend to locate themselves at a place we call 'the edge of chaos.'We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and the new are constantly at War. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. Too much change is as destructive as too little. Only at the edge of chaos can complex systems flourish."
He paused. "And, by implication, extinction is the inevitable result of one or the other strategy -too much change, or too little."
In the audience, heads were nodding. This was familiar thinking to most of the researchers present. Indeed, the concept of the edge of chaos was very nearly dogma at the Santa Fe Institute.